Construction and Optimization of Mental Health Education Consultation Management System Based on Decision Tree Association Rule Mining

Author:

Liu Haoxian1,Chen Xiuyuan1ORCID

Affiliation:

1. Suzhou Industrial Park Institute of Services Outsourcing, Suzhou 215123, China

Abstract

This paper studies association rule mining and decision tree algorithm, focusing on the extended research of association rule mining, including the number of generated rules, mining association rules of long itemsets with low support, attribute selection criteria and multivalue attributes in decision tree algorithm. This paper conducts in-depth research and analysis on the design and optimization of the mental health education consultation management system using the association rule decision tree algorithm. This paper analyzes the meaning of parameters under the support-confidence-interest model, and uses regression method to design equations between the number of rules and parameters. We use the multiple correlation coefficient to test the fitting effect of the equation, and use the significance test to verify whether the coefficient of the parameter is significantly zero. On the one hand, the widely used psychological crisis prevention measures generally include the screening of the SCL psychological scale in the early stage of first-year enrolment, the holding of general psychological knowledge lectures and courses, and the opening of psychological counselling rooms with a low penetration rate, but these practices are to a certain extent. In other words, it cannot enable the student administrator to grasp the psychological status of the students in a timely, effective, and dynamic manner, to timely intervene in the possible crisis. Not only the number of attribute values of the current node is considered but also the size of the variable precision clear area of the lower node is considered, that is, the two-layer nodes of the tree are considered at the same time. The new attribute selection method not only overcomes the shortcomings of the original algorithm, but also has the advantages of variable precision rough sets. This paper uses a new criterion for attribute selection, weighted roughness and complexity, which comprehensively considers the classification accuracy and the number of branches. In order to reduce the influence of noisy data and missing values, the algorithm uses a class prediction method based on matching degree. Through comparative experiments, the effectiveness of the method proposed in this paper is verified. We propose a new calculation formula for the similarity of the child nodes of the label set to evaluate the effect of attribute classification, and comprehensively consider the situation that the elements in the two multilabel sets appear or not appear at the same time, so that the calculation of the similarity of the label set is more comprehensive. The experimental results show that the model proposed in this paper can excavate the dialectical combination of multiple factors. By comparing with the existing algorithms, the classification effect of the proposed algorithm is verified. The classification algorithm proposed in this paper is more suitable for dealing with multi-value attributes and multiclass data classification problems. The psychological evaluation and counselling system designed in this paper has achieved the expected goal. The results of this paper can improve the problems existing in the work of psychological counselling services.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3