Application of Multilevel Local Feature Coding in Music Genre Recognition

Author:

Xiao Yangxin1,Zhang Qiang2ORCID,Wu Meng3,Kailing Dong4

Affiliation:

1. Music School, Jiangxi Normal University, Nanchang 330027, Jiangxi, China

2. School of Music and Dance, China-Asean Art College, Chengdu University, Chengdu 610000, Sichuan, China

3. Jiangxi Police Institution, Nanchang 330100, Jiangxi, China

4. Chengdu Polytechnic College, ChengDu 610000, China

Abstract

When the current method is used to recognize music genre style, the extracted features are not fused, which leads to poor recognition effectiveness. Therefore, the application research based on multilevel local feature coding in music genre recognition is proposed. Features of music are extracted from timbre, rhythm, and pitch, and the extracted features are fused based on D-S evidence theory. The fused music features are input into the improved deep learning network, and the storage system structure is determined from the advantages of cloud storage availability, manageability, and expansibility. It is divided into four modules: storage layer, management layer, structure layer, and access layer. The model of music genre style recognition is constructed to realize the application research based on multilevel local feature coding in music genre recognition. The experimental results show that the recognition accuracy of the proposed method is always at a high level, and the mean square error positively correlated with the number of beats. After segmentation, the waveform is denser, which has a good application effect.

Funder

Ministry of Education

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3