Gray-Related Support Vector Machine Optimization Strategy and Its Implementation in Forecasting Photovoltaic Output Power

Author:

Xiao Bo1ORCID,Zhu Hai1,Zhang Sujun2ORCID,OuYang Zi2ORCID,Wang Tandong3ORCID,Sarvazizi Saeed45ORCID

Affiliation:

1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

2. Meteocontrol (Shanghai) Data Tech Co., Ltd, Shanghai 200233, China

3. School of Electronics and Information, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China

4. Department of Petroleum Engineering, Ahwaz Faculty of Petroleum Engineering, Petroleum University of Technology (PUT), Ahwaz, Iran

5. Department of Petroleum Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

Abstract

Reliable and accurate photovoltaic (PV) output power projection is critical for power grid security, stability, and economic operation. However, because of the indirectness, unpredictability, and solar energy volatility, predicting precise and reliable photovoltaic output power is a complicated subject. The photovoltaic output power variable is evaluated in this study using a powerful machine learning approach called the support vector machine model based on gray-wolf optimization. A vast dataset of previously published papers was compiled for this purpose. Several studies were carried out to assess the suggested model. The statistical evaluation revealed that this model predicts absolute values with reasonable accuracy, including R 2 and RMSE values of 0.908 and 74.6584, respectively. The practical input data were also subjected to sensitivity analysis. The results of this analysis showed that the air temperature parameter has a greater effect on the target parameter than the solar irradiance intensity parameter (relevancy factor equal to 0.75 compared to 0.49, respectively). The leverage approach was also used to test the accuracy of actual data, and the findings revealed that the vast majority of data is accurate. This basic but accurate model may be quite effective in predicting target values and could be a viable substitute for laboratory data.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3