Characterization of Sucrose Thin Films for Biomedical Applications

Author:

Iconaru S. L.1,Ungureanu F.1,Costescu A.1,Costache M.2,Dinischiotu A.2,Predoi D.1

Affiliation:

1. Department of Multifunctional Nanoparticles for Biomedical Applications, National Institute of Materials Physics, P.O. Box MG7, Magurele, 077125 Bucharest, Romania

2. Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania

Abstract

Sucrose is a natural osmolyte accumulated in the cells of organisms as they adapt to environmental stress. In vitro sucrose increases protein stability and forces partially unfolded structures to refold. Thin films of sucrose (C12H22O11) were deposited on thin cut glass substrates by the thermal evaporation technique (P105torr). Characteristics of thin films were put into evidence by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), scanning electron microscopy (SEM), and differential thermal analysis and thermal gravimetric analysis (TG/DTA). The experimental results confirm a uniform deposition of an adherent layer. In this paper we present a part of the characteristics of sucrose thin films deposited on glass in medium vacuum conditions, as a part of a culture medium for osteoblast cells. Osteoblast cells were used to determine proliferation, viability, and cytotoxicity interactions with sucrose powder and sucrose thin films. The osteoblast cells have been provided from the American Type Culture Collection (ATCC) Centre. The outcome of this study demonstrated the effectiveness of sucrose thin films as a possible nontoxic agent for biomedical applications.

Funder

Romanian Scientific Program PNCD II

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3