A Novel Fast Iterative Learning Control for Linear Discrete Systems with Parametric Disturbance and Measurement Noise

Author:

Lei Tongfei1,Riaz Saleem2ORCID,Manzoor Nadir3ORCID

Affiliation:

1. School of Mechanical Engineering, Xijing University, Xi’an 710123, China

2. School of Automation, Northwestern Polytechnical University, Xi’an 170072, China

3. Education Department, Government Primary School Oad Wala, Chiniot, Punjab, Pakistan

Abstract

Precise industrial control technology is constantly in need of accurate and strong control. Error convergence for a typical linear system is very minimal when using a conventional iterative learning control strategy. This study develops a quick iterative learning control law to address this issue. We have presented a new PD iterative learning control approach which is basically grounded on backward error and control parameter rectification for a class of linear discrete time-invariant (LDTI) systems. We have deliberated the repetitive system, which has constraint disturbance and measurement noise. First, we have developed a form of the faster learning law along with a full explanation of the algorithm’s control factor generation process. And then, using the vector method in conjunction with the theory of spectral radius, sufficient conditions for the algorithm’s convergence are introduced for parameter estimation with no noise, parameter uncertainty but excluding the noise, parameter uncertainty with small perturbations, and noise in four different scenarios. Eventually, results show that convergence depends on the control law’s learning factor, the correction term, the factor of association, and the learning interval. Ultimately, the simulation results indicate that suggested approach has a faster error convergence as compared with classical PD algorithm.

Funder

Xijing University

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3