A Simple Cardiovascular Model for the Study of Hemorrhagic Shock

Author:

Curcio Luciano1ORCID,D’Orsi Laura2ORCID,Cibella Fabio1ORCID,Wagnert-Avraham Linn3ORCID,Nachman Dean34ORCID,De Gaetano Andrea12ORCID

Affiliation:

1. National Research Council of Italy, Institute for Biomedical Research and Innovation, Via Ugo La Malfa, 153, 90146 Palermo, Italy

2. National Research Council of Italy, Institute for Systems Analysis and Computer Science “A. Ruberti”, BioMatLab (Biomathematics Laboratory), UCSC Largo A. Gemelli 8, 00168 Rome, Italy

3. Institute for Research in Military Medicine (IRMM), Faculty of Medicine, The Hebrew University of Jerusalem and the Israel Defense Forces Medical Corps, Israel

4. Department of Internal Medicine, Hadassah University Hospital, Jerusalem, Israel

Abstract

Hemorrhagic shock is the number one cause of death on the battlefield and in civilian trauma as well. Mathematical modeling has been applied in this context for decades; however, the formulation of a satisfactory model that is both practical and effective has yet to be achieved. This paper introduces an upgraded version of the 2007 Zenker model for hemorrhagic shock termed the ZenCur model that allows for a better description of the time course of relevant observations. Our study provides a simple but realistic mathematical description of cardiovascular dynamics that may be useful in the assessment and prognosis of hemorrhagic shock. This model is capable of replicating the changes in mean arterial pressure, heart rate, and cardiac output after the onset of bleeding (as observed in four experimental laboratory animals) and achieves a reasonable compromise between an overly detailed depiction of relevant mechanisms, on the one hand, and model simplicity, on the other. The former would require considerable simulations and entail burdensome interpretations. From a clinical standpoint, the goals of the new model are to predict survival and optimize the timing of therapy, in both civilian and military scenarios.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3