Affiliation:
1. Laboratoire des Matériaux et Environnement (LA.M.E), UFR-SEA, Université de Ouagadougou, BP 7021, Ouaga 03, Burkina Faso
2. Département de Physique, Faculté des Science, Université de Yaoundé I, BP 812, Yaoundé, Cameroon
Abstract
We used a one-dimensional simulation program Solar Cell Capacitance Simulator in 1 Dimension (SCAPS-1D) to investigate Copper-Indium-Gallium-Diselenide- (CIGS-) based solar cells properties. Starting with a conventional ZnO-B/i-ZnO/CdS/CIGS structure, we simulated the parameters of current-voltage characteristics and showed how the absorber layer thickness, hole density, and band gap influence the short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (FF), and efficiency of solar cell. Our simulation results showed that all electrical parameters are greatly affected by the absorber thickness (w) below 1000 nm, due to the increase of back-contact recombination and very poor absorption. Increasing hole density (p) or absorber band gap (Eg) improvesVocand leads to high efficiency, which equals value of 16.1% whenp= 1016 cm−3andEg=1.2 eV. In order to reduce back-contact recombination, the effect of a very thin layer with high band gap inserted near the back contact and acting as electrons reflector, the so-called back-electron reflector (EBR), has been investigated. The performances of the solar cells are significantly improved, when ultrathin absorbers (w< 500 nm) are used; the corresponding gain ofJscdue to the EBR is 3 mA/cm2. Our results are in good agreement with those reported in the literature from experiments.
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献