Biomedical Text Classification Using Augmented Word Representation Based on Distributional and Relational Contexts

Author:

Parwez Md. Aslam1,Fazil Mohd.2,Arif Muhammad3ORCID,Nafis Md Tabrez1ORCID,Auwul Md. Rabiul4ORCID

Affiliation:

1. Department of Computer Science & Engineering, Jamia Hamdard, New Delhi, India

2. University of Limerick, Limerick, Ireland

3. Department of Computer Science, Superior University Lahore, Lahore 54000, Pakistan

4. Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh

Abstract

Due to the increasing use of information technologies by biomedical experts, researchers, public health agencies, and healthcare professionals, a large number of scientific literatures, clinical notes, and other structured and unstructured text resources are rapidly increasing and being stored in various data sources like PubMed. These massive text resources can be leveraged to extract valuable knowledge and insights using machine learning techniques. Recent advancement in neural network-based classification models has gained popularity which takes numeric vectors (aka word representation) of training data as the input to train classification models. Better the input vectors, more accurate would be the classification. Word representations are learned as the distribution of words in an embedding space, wherein each word has its vector and the semantically similar words based on the contexts appear nearby each other. However, such distributional word representations are incapable of encapsulating relational semantics between distant words. In the biomedical domain, relation mining is a well-studied problem which aims to extract relational words, which associates distant entities generally representing the subject and object of a sentence. Our goal is to capture the relational semantics information between distant words from a large corpus to learn enhanced word representation and employ the learned word representation for various natural language processing tasks such as text classification. In this article, we have proposed an application of biomedical relation triplets to learn word representation through incorporating relational semantic information within the distributional representation of words. In other words, the proposed approach aims to capture both distributional and relational contexts of the words to learn their numeric vectors from text corpus. We have also proposed an application of the learned word representations for text classification. The proposed approach is evaluated over multiple benchmark datasets, and the efficacy of the learned word representations is tested in terms of word similarity and concept categorization tasks. Our proposed approach provides better performance in comparison to the state-of-the-art GloVe model. Furthermore, we have applied the learned word representations to classify biomedical texts using four neural network-based classification models, and the classification accuracy further confirms the effectiveness of the learned word representations by our proposed approach.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3