The Mechanism of Sevoflurane Preconditioning-Induced Protections against Small Intestinal Ischemia Reperfusion Injury Is Independent of Mast Cell in Rats

Author:

Gan Xiaoliang12ORCID,Su Guangjie1,Zhao Weicheng13,Huang Pinjie1,Luo Gangjian1,Hei Ziqing1

Affiliation:

1. Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China

2. Department of Anesthesiology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China

3. Department of Anesthesiology, The First People’s Hospital of Foshan, Foshan 528000, China

Abstract

The study aimed to investigate whether sevoflurane preconditioning can protect against small intestinal ischemia reperfusion (IIR) injury and to explore whether mast cell (MC) is involved in the protections provided by sevoflurane preconditioning. Sprague-Dawley rats exposed to sevoflurane or treated with MC stabilizer cromolyn sodium (CS) were subjected to 75-minute superior mesenteric artery occlusion followed by 2-hour reperfusion in the presence or absence of MC degranulator compound 48/80 (CP). Small intestinal ischemia reperfusion resulted in severe intestinal injury as demonstrated by significant elevations in intestinal injury scores and p47phoxand gp91phox, ICAM-1 protein expressions and malondialdehyde and IL-6 contents, and MPO activities as well as significant reductions in SOD activities, accompanied with concomitant increases in mast cell degranulation evidenced by significant increases in MC counts, tryptase expression, andβ-hexosaminidase concentrations, and those alterations were further upregulated in the presence of CP. Sevoflurane preconditioning dramatically attenuated the previous IIR-induced alterations except MC counts, tryptase, andβ-hexosaminidase which were significantly reduced by CS treatment. Furthermore, CP exacerbated IIR injury was abrogated by CS but not by sevoflurane preconditioning. The data collectively indicate that sevoflurane preconditioning confers protections against IIR injury, and MC is not involved in the protective process.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3