Influence of Ultrasonic Burnishing Technique on Surface Quality and Change in the Dimensions of Metal Shafts

Author:

Huuki Juha1,Hornborg Mikael2,Juntunen Jermu2

Affiliation:

1. Engineering Design and Production, Production Engineering, School of Science and Technology, Aalto University, Puumiehenkuja 3, 02150 Espoo, Finland

2. School of Science and Technology, Aalto University, Puumiehenkuja 3, 02150 Espoo, Finland

Abstract

This paper presents ultrasonic burnishing as a mechanical surface treatment for improving the quality of rotating shafts. Ultrasonic burnishing is a modern method for finishing workpieces to produce a good surface quality. This process improves the surface quality and increases the surface hardness of the workpiece, and the surface roughness of the workpiece improves. As a result, wear resistance and fatigue life increase. Furthermore, these improvements are achieved without expensive equipment or long processing times. In this paper the influence of the ultraburnishing technique on the change in diameter and its effects on the out-of-roundness of rotating shafts are investigated. This paper also takes a look at the magnitudes of the improvement of the surface roughness as a result of using ultrasonic burnishing. Three different materials, aluminium, 34-CrNiMo6 tempering steel, and S355J2 structural steel, are examined. The results showed that ultrasonic burnishing is a treatment that improves the quality of components. Ultrasonic burnishing also has a reducing effect on the final diameter and out-of-roundness and increases the hardness of the workpiece. It can also be stated that the material of the workpiece does not have a significant effect on the magnitude of the reduced surface roughness values.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3