In Situ Test Research on Friction Resistance of Self-Anchored Test Pile

Author:

Chen Chi1,Ma Hailong1ORCID,Yang Bilian1

Affiliation:

1. Department of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China

Abstract

The traditional static load test method has been considered as the most direct and reliable method to determine the bearing capacity of single pile, but it has some disadvantages, such as inconvenient operation, laborious test, high cost, and being time-consuming. In this paper, a new type of pile testing method, self-anchored pile testing method, was proposed, and the in situ test was carried out for the first time. This method allows the upper and lower piles to provide force to each other and does not occupy other construction spaces. It had the advantages of simple operation and being economical and practical. Based on the Q-w curve, axial force distribution curve, and hyperbolic function model of load transfer, this paper studied the evolution law of friction of self-anchored test pile and the load transfer process of self-anchored test pile. The results show that the load transfer process of self-anchored pile-soil interface can be divided into three stages: elastic, elastic-plastic, and limit state. The friction of the upper and lower piles starts from the bottom of each pile and then gradually increases. The soil around the upper and lower piles gradually undergoes nonlinear deformation and shear failure, and the pile soil reaches the yield state. By analyzing the hyperbolic function model of load transfer, it shows that the hyperbolic function model can be better applied to the self-anchored test pile, which has reference value for the selection of the function model of self-anchored test pile in the future.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference23 articles.

1. Analysis of Pile Foundations Subject to Static and Dynamic Loading

2. Load transfer performance of overlength piles;W. H. Zhong;Rock and Soil Mechanics,2005

3. Research on super-long pile in soft clay;X. R. Zhu;Chinese Journal of Geotechnical Engineering,2003

4. The Action of Soft Clay along Friction Piles

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3