Structure Optimization of Mixed-Speed Train Traffic for Cyclic Timetable: Model and Algorithm Development

Author:

Zhang Jiamin1ORCID,Zhang Jiarui2

Affiliation:

1. College of Transportation, Shandong University of Science and Technology, Qingdao 266590, Shandong, China

2. Qingdao Locomotive Depot, Jinan Bureau of China Railway, Qingdao 266041, Shandong, China

Abstract

Trains can be optimally spread over the period of the cyclic timetable. By integrating sequencing issue with headway time together, this paper studies the structure optimization of mixed-speed train traffic for a cyclic timetable. Firstly, by taking it as a job-shop problem with sequence-dependent setup times on one machine, in the type of infinite capacity resource with headway (ICR + H), the problem is transformed to alternative graph (AG) and then recast to the mixed-speed train traffic planning (MSTTP) model. For the multiobjective in MSTTP, three indicators are optimized, i.e., heterogeneity, cycle time, and buffer time, which correspond to diversity of train service toward passenger, capacity consumption of rail network, and stability of train operation, respectively. Secondly, the random-key genetic algorithm (RKGA) is proposed to tackle the sequence and headway simultaneously. Finally, RKGA is coded with visual studio C# and the proposed method is validated with a case study. The rail system considered is a line section encompassing a territory of 180 km with 15 mixed-speed trains in each cycle of the timetable. Results indicate the comprehensively balanced train plan for all stakeholders from random variations of train sequence and headway time. Both the quantitative proportion of heterogeneity/homogeneity (e.g., 2.5) about the optimized distribution of the mixed train traffic and the link between train headway time and the sequence for each traffic scenario are found. All the findings can be used to arrange the mixed-speed train traffic more scientifically.

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Reference29 articles.

1. LandexA.Methods to Estimate Railway Capacity and Passenger Delays2008Copenhagen, DenmarkUniversity of DenmarkPh.D. Dissertation

2. Techniques for absolute capacity determination in railways

3. KaasA. H.Methods of Calculation of Railway Capacity1998Copenhagen, DenmarkUniversity of DenmarkPh.D. Dissertation

4. Evaluation of railway capacity;A. Landex

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3