Bearing Early Fault Diagnosis Based on an Improved Multiscale Permutation Entropy and SVM

Author:

Jiang Qunyan1,Dai Juying1ORCID,Shao Faming1,Song Shengli1,Meng Fanjie2

Affiliation:

1. Department of Mechanical Engineering, College of Field Engineering and Army Engineering University, PLA, Nanjing 210007, China

2. Department of Space Test and Launch, Noncommissioned Officer School, Space Engineering University, Beijing 102299, China

Abstract

Bearing fault is a process of gradual development and deepening. In the early stage of the fault, if it can be found out in time and taken reasonable prevention and elimination measures, we can avoid serious losses and safety accidents. Therefore, the feature extraction and analysis of early weak fault has important practical significance. In this paper, an improved multiscale permutation entropy (IMPE) method was proposed to overcome the shortcomings in the coarse-grained process. In order to solve the problem that only considering a single coarse-grained sequence under a certain scale may lead to the loss of feature information, this paper proposed to calculate the time series with equal overlapping segments, that was to consider all coarse-grained sequences under the same scale to reflect the feature information of fault signals more comprehensively. In order to solve the problem that feature extraction is not refined enough when using the first-order moment mean value calculation in traditional MPE calculation, a calculation method based on the skewness of the third-order moment was proposed. The calculation method is more sensitive to the complexity and fluctuation of signals and can better describe the feature details and extract the fault features effectively. IMPE was applied to feature extraction of early weak fault of rolling bearing and input into Support Vector Machines (SVMs) for faults classification. Aiming at SVM parameter optimization problem, an improved chaos firefly optimization algorithm was proposed. Experimental results show that the new method of early weak fault identification based on IMPE-SVM was effective in detecting rolling bearing faults with different severity.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference46 articles.

1. A method of incipient fault diagnosis of bearings based on autocorrelation analysis and MCKD;X. Zhu;Journal of Vibration and Shock,2019

2. Fault diagnosis of rolling element bearings based on EMD and MKD;W. Sui;Journal of Vibration and Shock,2015

3. Hierarchical model updating strategy of complex assembled structures with uncorrelated dynamic modes;A. Cf;Chinese Journal of Aeronautics,2021

4. Dynamic modeling and simulation of inter-shaft bearings with localized defects excited by time-varying displacement

5. Multi-feature entropy distance approach with vibration and acoustic emission signals for process feature recognition of rolling element bearing faults

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3