MGPM Methods for Rectangular Single-Size Printed Circuit Board Orthogonal Packing Problems

Author:

Pan Pengfei1ORCID,Han Yi2ORCID,Lv Hexin2,Dai Guoyong2,Jin Zhiyong2

Affiliation:

1. School of Computer Science and Artifical Intelligence, Changzhou University, Changzhou, China

2. Zhejiang Shuren University, Hangzhou, China

Abstract

Printed circuit board (PCB) orthogonal packing problems derive from the massive circuit board production process in the electronic industry. In the early stage, it mainly relied on human experiences to make decisions on how to make the most of each sheet while meeting customers’ orders. Up till now, researchers in enterprises and academic circles are still trying to explore effective mathematical models and feasible optimization methods. In most cases, what PCB companies generally face is the orthogonal layout decision, which considers positioning each rectangle PCB piece (PCB-P) on a rectangle sheet board (panel) in an ideal way so that each panel has the minimal remains with the most PCB-Ps. In this paper, multi-round gradual packing methods (MGPMs) are proposed based on the idea of combinatorial optimization and dynamic programming. MGPMs include the depth priority-based method (MGPM-DP) and breadth priority-based branch-and-prune method (MGPM-BC). The former has the advantage of finding better solutions, while the latter has the advantage of consuming short computational time. Through extensive computational tests on real data from a PCB production enterprise in China, both MGPM-DP and MGPM-BC have achieved noticeable and satisfactory results compared with the simplex method, dynamic programming method, and a widely used industrial software (Yuanbo) in China.

Funder

Zhejiang Shuren University

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference19 articles.

1. Research and development of printed circuit boards packing software;N. Lin;Printed Circuit Information,2009

2. Summary of research on layout of rectangular blanks of the same size;H. Li;Software Guide,2012

3. A typology of cutting and packing problems

4. Minimising trim loss in cutting rectangular blanks of a single size from a rectangular sheet using orthogonal guillotine cuts

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3