Application of Porcine Kidney-Derived Extracellular Matrix as Coating, Hydrogel, and Scaffold Material for Renal Proximal Tubular Epithelial Cell

Author:

Lee Eun Hye1ORCID,Chun So Young2,Yoon Bo Hyun1,Kim Hyun Tae3,Chung Jae-Wook4,Lee Jun Nyung4,Ha Yun-Sok4ORCID,Kwon Tae Gyun4ORCID,Byeon Kyeong-Hyeon45,Kim Bum Soo3ORCID

Affiliation:

1. Joint Institute for Regenerative Medicine, Kyungpook National University, Daegu, Republic of Korea

2. BioMedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea

3. Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea

4. Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea

5. Department of Urology, Haewoo Urology Clinic, Daegu, Republic of Korea

Abstract

Background. Human renal proximal tubular epithelial (RPTE) cell is a very useful tool for kidney-related experiments in vitro/ex vivo. However, only a few primary RPTE cells can be obtained through kidney biopsy, the proliferation rate of primary cell is very low, and the cultured cell properties are easily altered in artificial conditions. Thus, RPTE cell usage is very tricky; we applied porcine kidney-derived extracellular matrix (renal ECM) as coating, hydrogel, and scaffold material to increase cell proliferation and maintain cellular properties providing three-dimensional (3D) niche, which can be a valuable cell delivery vehicle. Methods. Porcine renal ECM was prepared by decellularization using 1% Triton X-100, solubilized with 0.5 M acetic acid. The final protein concentration was adjusted to 10 μg/μL (pH 7.0). The efficacies as coating, hydrogel, and scaffold materials were analyzed through cell morphology, proliferation rate, renal-associated gene expressions, chemical composition, and microstructure evaluation. The efficacies as a coating material were compared with Matrigel, collagen type 1 (col1), gelatin, fibrinogen, and thrombin. After confirmation of coating effects, the effective concentration range was decided. The efficacies as hydrogel and scaffold materials were compared with hyaluronic acid (HA) and col1, respectively. Results. As the coating material, renal ECM showed a higher cell proliferation rate compared to other materials, except for Matrigel. Renal-associated gene expressions were significantly enhanced in the renal ECM than other materials. Coating effect on cell proliferation was dependent on the renal ECM concentration, and the effective concentration ranged from 30 to 100 μg. As the hydrogel material, renal ECM showed a distinct inner cell network morphology and significantly increased renal-associated gene expressions, compared to HA hydrogel. As the scaffold material, renal ECM showed specific amide peaks, enhanced internal porosity, cell proliferation rate, and renal-associated gene expression compared to the col1 scaffold. Conclusions. We concluded that renal ECM can be a suitable material for RPTE cell culture and usage. More practically, the coated renal ECM stimulates RPTE cell proliferation, and the hydrogel and scaffold of renal ECM provide useful 3D culture niche and cell delivery vehicles maintaining renal cell properties.

Funder

Kyungpook National University Hospital

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3