Affiliation:
1. Institute of Structural Mechanics, Bauhaus-Universitat Weimar, Marienstraße 15, 99423 Weimar, Germany
Abstract
An overview of computational methods to model fracture in brittle and quasi-brittle materials is given. The overview focuses on continuum models for fracture. First, numerical difficulties related to modelling fracture for quasi-brittle materials will be discussed. Different techniques to eliminate or circumvent those difficulties will be described subsequently. In that context, regularization techniques such as nonlocal models, gradient enhanced models, viscous models, cohesive zone models, and smeared crack models will be discussed. The main focus of this paper will be on computational methods for discrete fracture (discrete cracks). Element erosion technques, inter-element separation methods, the embedded finite element method (EFEM), the extended finite element method (XFEM), meshfree methods (MMs), boundary elements (BEMs), isogeometric analysis, and the variational approach to fracture will be reviewed elucidating advantages and drawbacks of each approach. As tracking the crack path is of major concern in computational methods that preserve crack path continuity, one section will discuss different crack tracking techniques. Finally, cracking criteria will be reviewed before the paper ends with future research perspectives.
Cited by
178 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献