Curcumin Is an Iconic Ligand for Detecting Environmental Pollutants

Author:

Devasena T.1,Balasubramanian N.2,Muninathan Natarajan3,Baskaran Kuppusamy3,John Shani T.4ORCID

Affiliation:

1. Centre for Nanoscience and Technology, Anna University, Chennai 608002, Tamil Nadu, India

2. Department of Electrochemical Engineering Laboratory, Anna University, Chennai 608002, Tamil Nadu, India

3. Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Meenakshi Academy of Higher Education and Research, Kanchipuram, Tamil Nadu, India

4. Department of Biology, School of Natural Science, Madawalabu University, Post Box No. 247,Oromiya Region, Bale Robe, Ethiopia

Abstract

The rapid increase in industrial revolution and the consequent environmental contamination demands continuous monitoring and sensitive detection of the pollutants. Nanomaterial-based sensing system has proved to be proficient in sensing environmental pollutants. The development of novel ligands for enhancing the sensing efficiency of nanomaterials has always been a challenge. However, the amendment of nanostructure with molecular ligand increases the sensitivity, selectivity, and analytical performance of the resulting novel sensing platform. Organic ligands are capable of increasing the adsorption efficacy, optical properties, and electrochemical properties of nanomaterials by reducing or splitting of band gap. Curcumin (diferuloylmethane) is a natural organic ligand that exhibits inherent fluorescence and electrocatalytic property. Due to keto-enol tautomerism, it is capable of giving sensitive signals such as fluorescence, luminescence, ultraviolet absorption shifts, and electrochemical data. Curcumin probes were also reported to give enhanced meterological performances, such as low detection limit, repeatability, reproducibility, high selectivity, and high storage stability when used with nanosystem. Therefore, research on curcumin-modified nanomaterials in the detection of environmental pollution needs a special focus for prototype and product development to enable practical use. Hence, this article reviews the role of curcumin as a natural fluorophore in optical and electrochemical sensing of environmentally significant pollutants. This review clearly shows that curcumin is an ideal candidate for developing and validating nanomaterials-based sensors for the detection of environmental pollutants such as arsenic, lead, mercury, boron, cyanide, fluoride, nitrophenol, trinitrotoluene, and picric acid and toxic gases such as ammonia and hydrogen chloride. This review will afford references for future studies and enable researchers to translate the lab concepts into industrial products.

Publisher

Hindawi Limited

Subject

Inorganic Chemistry,Organic Chemistry,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3