Potential Evapotranspiration Reduction and Its Influence on Crop Yield in the North China Plain in 1961–2014

Author:

Dong Wanlin12ORCID,Li Chao3,Hu Qi4,Pan Feifei5,Bhandari Jyoti2ORCID,Sun Zhigang26ORCID

Affiliation:

1. China Meteorological Administration Training Centre, Beijing 100081, China

2. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

3. Mentougou Meteorological Service, Beijing 102308, China

4. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China

5. Department of Geography, University of North Texas, Denton, TX 76203, USA

6. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China

Abstract

Climate change has caused uneven changes in hydrological processes (precipitation and evapotranspiration) on a space-temporal scale, which would influence climate types, eventually impact agricultural production. Based on data from 61 meteorological stations from 1961 to 2014 in the North China Plain (NCP), the spatiotemporal characteristics of climate variables, such as humidity index, precipitation, and potential evapotranspiration (ET0), were analyzed. The sensitivity coefficients and contribution rates were applied to ET0. The NCP has experienced a semiarid to humid climate from north to south due to the significant decline of ET0 (−13.8 mm decade−1). In the study region, 71.0% of the sites showed a “pan evaporation paradox” phenomenon. Relative humidity had the most negative influence on ET0, while wind speed, sunshine hours, and air temperature had a positive effect on ET0. Wind speed and sunshine hours contributed the most to the spatiotemporal variation of ET0, followed by relative humidity and air temperature. Overall, the key climate factor impacting ET0 was wind speed decline in the NCP, particularly in Beijing and Tianjin. The crop yield in Shandong and Henan provinces was higher than that in the other regions with a higher humidity index. The lower the humidity index in Hebei province, the lower the crop yield. Therefore, potential water shortages and water conflict should be considered in the future because of spatiotemporal humidity variations in the NCP.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3