Anchor Stress and Deformation of the Bolted Joint under Shearing

Author:

Lin Hang12ORCID,Zhu Youyan1,Yang Jianyu3ORCID,Wen Zhijie2ORCID

Affiliation:

1. School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410083, China

2. State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China

3. School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China

Abstract

Bolts are widely used in rock mass engineering, wherein the bolt support improves the safety and stability of the rock mass. To reveal the mechanical behavior of the bolt and failure mechanism of the bolted joint in the shearing process, a direct shear test was conducted by changing the state of grouting, number of bolt, and inclination angle of the bolt. The change in the axial force of the anchor in the shearing process was evaluated by conducting a strain gauge test, and the mechanical behavior of the bolt under the external force was studied. The results showed that under the same normal stress, the yield displacement of the bolt decreased and the stiffness of the joint gradually increased with increased number of bolts. At the same number of bolts, their yield displacement increased with increased normal stress. Analysis further revealed that grouting on the joint improved the force condition of the bolt, increased the yield displacement of the bolt, and coordinated the deformation of the grouting body and bolt, thereby improving the shear strength of the joint. Lastly, when the anchor angles differed, the axial pulling resistance of the anchor changed, and the yield displacement of the anchor with 45° inclination was <90°. The yield displacement of the bolt showed that the supporting effect of the bolt with a 45° inclination was better than that of the bolt with a 90° inclination.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3