Diagnosis and Exercise Rehabilitation of Knee Joint Anterior Cruciate Ligament Injury Based on 3D-CT Reconstruction

Author:

Zhang Shunchao1ORCID,Lv Zhihan

Affiliation:

1. School of Sports, Pingdingshan University, Pingdingshan, Henan 467000, China

Abstract

The joint capsule of the knee joint is attached to the edges of various articular surfaces and is thin and loose. Therefore, ligament reinforcement is needed to protect the knee joint and increase the stability of the joint. It plays a vital role in human activities. In this paper, a 3D-CT three-dimensional reconstruction method is used to reconstruct the ACL natural femoral imprint and double-bone tract. The relative positional relationship between the two center points is compared, and the law is summarized to guide the improvement of ACL anatomic double-beam reconstruction under arthroscopy. The 3D reconstruction results suggest that the bone layer in the anterior medial portion is the thickest, forming a peak, and the thickness of the bone layer in the posterior medial portion gradually decreases in a stepwise manner. The entire bone tissue in the anterior medial portion and posterior medial portion is integrated into one body. The tissues are connected as a whole, and the thickness is relatively uniform. The two parts of the bone tissues are not connected. The CF tissue was inserted into the bone tissue in a zigzag pattern. The changes of CF tissues in the anterior medial and posteromedial CF tissues were similar, and they were distributed stepwise from the inside to the outside. According to the bone and CF spatial structure and changing rules, ACL is divided into medial and lateral beams. According to this study, it can be summarized that (1) 3D reconstruction can clearly reconstruct the natural footprint of ACL femoral stops and postoperative osseous position and (2) 3D reconstruction can be used to evaluate the position of osseous postoperative ACL anatomic double-beam reconstruction. Arthroscopy double-beam reconstruction of ACL is instructive.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3