Mechanism of Forming Low Resistivity in Shale Reservoirs

Author:

Xie Jirong12,He Jiahuan234ORCID,Zhou Keming23,Tang Zhijuan3,Chen Manfei23,He Tingting3,Zou Mengwen3,Luo Tao3,Li Nong234,Wang Li3

Affiliation:

1. PetroChina Southwest Oil and Gas Field Company, Chengdu, China

2. Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province, Chengdu, China

3. Institute of Exploration and Development, PetroChina Southwest Oil and Gas Field Company, Chengdu, China

4. Sichuan Kelite Oil and Gas Technology Service Limited Company, Chengdu, China

Abstract

In the oil and gas industry, traditional logging mostly deems that oil and gas reservoirs are characterized by high resistivity, whereas the water layer is often by low resistivity. However, a lot of exploration and development practices on shale gas reservoirs in Sichuan Basin, China, prove that it is hard to characterize a functional relation between resistivity and water saturation using the Archie equation. Therefore, to make clear the mechanism to form low resistivity in shale gas reservoirs, the matrix resistivity was calculated through the percolation network simulation based on pore structure characteristics and mineral compositional parameters. Moreover, the resistivity in low-resistivity laminations of shale was measured through the finite element simulation. In addition, the reasons for such low resistivity in shale were analyzed according to the resistivity-forming mechanism, and the effects of penetration degree, width, quantity, and spatial distribution of the laminations on the resistivity were worked out. Those may provide theoretical support for explaining the phenomenon of low-resistivity gas reservoirs.

Funder

Central Government Guided Local Science and Technology Development Special Fund

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3