Anti-Inflammatory Activity of Ferula assafoetida Oleo-Gum-Resin (Asafoetida) against TNF-α-Stimulated Human Umbilical Vein Endothelial Cells (HUVECs)

Author:

Mobasheri Leila12,Khorashadizadeh Mohsen34,Safarpour Hossein3,Mohammadi Maryam5,Anani Sarab Gholamreza23ORCID,Askari Vahid Reza678ORCID

Affiliation:

1. Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran

2. Department of Medical Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran

3. Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran

4. Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran

5. Department of Medical Immunology, Faculty of Medicine, Shahed University of Medical Sciences, Tehran, Iran

6. Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

7. Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

8. International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Inflammation is the body’s biological reaction to endogenous and exogenous stimuli. Recent studies have demonstrated several anti-inflammatory properties of Ferula species. In this paper, we decided to study the anti-inflammatory effect of ethanolic extract of Ferula assafoetida oleo-gum-resin (asafoetida) against TNF-α-stimulated human umbilical vein endothelial cells (HUVECs). HUVECs were cultured in a flat-bottom plate and then treated with ethanolic extract of asafoetida (EEA, 0-500 μg/ml) and TNF-α (0-100 ng/ml) for 24 h. We used the MTT test to assess cell survival. In addition, the LC-MS analysis was performed to determine the active substances. HUVECs were pretreated with EEA and then induced by TNF-α. Intracellular reactive oxygen species (ROS) and adhesion of peripheral blood mononuclear cells (PBMCs) to HUVECs were evaluated with DCFH-DA and CFSE fluorescent probes, respectively. Gene expression of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin and surface expression of ICAM-1 protein were measured using real-time PCR and flow cytometry methods, respectively. While TNF-α significantly increased intracellular ROS formation and PBMC adhesion to TNF-α-induced HUVECs, the pretreatment of HUVECs with EEA (125 and 250 μg/ml) significantly reduced the parameters. In addition, EEA pretreatment decreased TNF-α-induced mRNA expression of VCAM-1 and surface protein expression of ICAM-1 in the target cells. Taken together, the results indicated that EEA prevented ROS generation, triggered by TNF-α, and inhibited the expression of VCAM-1 and ICAM-1, leading to reduced PBMC adhesion. These findings suggest that EEA can probably have anti-inflammatory properties.

Funder

Birjand University of Medical Sciences

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3