Selective Targeting of Cancerous Mitochondria and Suppression of Tumor Growth Using Redox-Active Treatment Adjuvant

Author:

Bakalova Rumiana123ORCID,Semkova Severina124,Ivanova Donika5,Zhelev Zhivko46,Miller Thomas7,Takeshima Tsuguhide8,Shibata Sayaka12,Lazarova Dessislava3,Aoki Ichio12,Higashi Tatsuya2ORCID

Affiliation:

1. Quantum-State Controlled MRI Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Chiba 263-8555, Japan

2. Functional and Molecular Imaging Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences (NIRS), QST, 4-9-1 Anagawa, Chiba 263-8555, Japan

3. Medical Faculty, Sofia University, 1 Koziak Str., Sofia 1407, Bulgaria

4. Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 21 Acad. G. Bonchev Str., Sofia 1113, Bulgaria

5. Faculty of Veterinary Medicine, Trakia University, 11 Armejska Str., Stara Zagora 6000, Bulgaria

6. Medical Faculty, Trakia University, 11 Armejska Str., Stara Zagora 6000, Bulgaria

7. IC-MedTech Co., San Diego, CA, USA

8. Radiation and Cancer Biology Group, Department of Charged Particle Therapy Research, National Institute of Radiological Sciences (NIRS), QST, 4-9-1 Anagawa, Chiba 263-8555, Japan

Abstract

Redox-active substances and their combinations, such as of quinone/ascorbate and in particular menadione/ascorbate (M/A; also named Apatone®), attract attention with their unusual ability to kill cancer cells without affecting the viability of normal cells as well as with the synergistic anticancer effect of both molecules. So far, the primary mechanism of M/A-mediated anticancer effects has not been linked to the mitochondria. The aim of our study was to clarify whether this “combination drug” affects mitochondrial functionality specifically in cancer cells. Studies were conducted on cancer cells (Jurkat, Colon26, and MCF7) and normal cells (normal lymphocytes, FHC, and MCF10A), treated with different concentrations of menadione, ascorbate, and/or their combination (2/200, 3/300, 5/500, 10/1000, and 20/2000 μM/μM of M/A). M/A exhibited highly specific and synergistic suppression on cancer cell growth but without adversely affecting the viability of normal cells at pharmacologically attainable concentrations. In M/A-treated cancer cells, the cytostatic/cytotoxic effect is accompanied by (i) extremely high production of mitochondrial superoxide (up to 15-fold over the control level), (ii) a significant decrease of mitochondrial membrane potential, (iii) a decrease of the steady-state levels of ATP, succinate, NADH, and NAD+, and (iv) a decreased expression of programed cell death ligand 1 (PD-L1)—one of the major immune checkpoints. These effects were dose dependent. The inhibition of NQO1 by dicoumarol increased mitochondrial superoxide and sensitized cancer cells to M/A. In normal cells, M/A induced relatively low and dose-independent increase of mitochondrial superoxide and mild oxidative stress, which seems to be well tolerated. These data suggest that all anticancer effects of M/A result from a specific mechanism, tightly connected to the mitochondria of cancer cells. At low/tolerable doses of M/A (1/100-3/300 μM/μM) attainable in cancer by oral and parenteral administration, M/A sensitized cancer cells to conventional anticancer drugs, exhibiting synergistic or additive cytotoxicity accompanied by impressive induction of apoptosis. Combinations of M/A with 13 anticancer drugs were investigated (ABT-737, barasertib, bleomycin, BEZ-235, bortezomib, cisplatin, everolimus, lomustine, lonafarnib, MG-132, MLN-2238, palbociclib, and PI-103). Low/tolerable doses of M/A did not induce irreversible cytotoxicity in cancer cells but did cause irreversible metabolic changes, including: (i) a decrease of succinate and NADH, (ii) depolarization of the mitochondrial membrane, and (iii) overproduction of superoxide in the mitochondria of cancer cells only. In addition, M/A suppressed tumor growth in vivo after oral administration in mice with melanoma and the drug downregulated PD-L1 in melanoma cells. Experimental data suggest a great potential for beneficial anticancer effects of M/A through increasing the sensitivity of cancer cells to conventional anticancer therapy, as well as to the immune system, while sparing normal cells. We hypothesize that M/A-mediated anticancer effects are triggered by redox cycling of both substances, specifically within dysfunctional mitochondria. M/A may also have a beneficial effect on the immune system, making cancer cells “visible” and more vulnerable to the native immune response.

Funder

Ministry of Education and Science

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Reference141 articles.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3