Early Mechanical and Microstructure Evolution Characteristics of Concrete in Steam Curing Condition

Author:

Liao Shengrong12,Xiao Chunming12,Cui Yuhao3ORCID,Xue Yan4

Affiliation:

1. Road and Bridge International Co., Ltd., Beijing 101100, China

2. Road & Bridge Southern China Engineering Co., Ltd., Zhongshan, 528400 Guangdong, China

3. International Joint Research Laboratory of Henan Province for Underground Space Development and Disaster Prevention, School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China

4. Huanghe Jiaotong University, Jiaozuo, 454000 Henan, China

Abstract

In order to study the effect of steam curing on early mechanical properties of concrete, the strength, dynamic elastic modulus, and microstructure characteristics of concrete under different curing methods were tested. The results show that the early strength growth rate of steam curing concrete is obviously higher than that of standard curing. The strength development of concrete during steam curing can be divided into three stages. Stage I and stage II (0 h-30 h) are critical periods for concrete strength growth. The dynamic elastic modulus of steam-curing concrete is mainly formed in the early stage and shows a linear rapid growth characteristic. The growth rate of the dynamic elastic modulus of concrete under standard curing condition is relatively slow, but in the later curing period (30 h-48 h), the growth rate of dynamic elastic modulus of concrete is significantly higher than that of steam curing concrete. Steam curing can accelerate the production of cement hydration products which rapidly increases the early strength of concrete. Under the standard curing condition, the hydration product structure of concrete is more compact, which is conducive to the growth of dynamic elastic modulus in a later period. This study provides a theoretical reference for the application of steam curing in engineering, which is important to ensure the production efficiency and quality of concrete in engineering.

Funder

Henan Provincial Department of Transportation

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3