Thai Word Segmentation with a Brain-Inspired Sparse Distributed Representations Learning Memory

Author:

Soisoonthorn Thasayu1ORCID,Unger Herwig2ORCID,Maliyaem Maleerat1ORCID

Affiliation:

1. King Mongkut’s University of Technology North Bangkok, Faculty of Information Technology and Digital Innovation, Bangkok, Thailand

2. University of Hagen, Chair of Communication Networks, Hagen, Germany

Abstract

Word segmentation is necessary for many natural language processing, especially Thai language, that is, unsegmented words. However, wrong segmentation causes terrible performance in the final result. In this study, we propose two new brain-inspired methods based on Hawkins’ approach to address Thai word segmentation. Sparse Distributed Representations (SDRs) are used to model the neocortex structure of the brain to store and transfer information. The first proposed method, THDICTSDR, improves the dictionary-based approach by utilizing SDRs to learn the surrounding context and combine with n-gram to select the correct word. The second method uses SDRs instead of a dictionary and is called THSDR. The evaluation uses the BEST2010 and LST20 standard datasets for segmentation words by comparing them with the longest matching, newmm, and Deepcut, which is state-of-the-art in the deep learning approach. The result shows that the first method provides the accuracy, and performances are significantly better than other dictionary bases. The first new method can achieve F1-Score at 95.60%, comparable to the state-of-the-art and Deepcut F1-Score at 96.34%. However, it provides a better performance F1-Score at 96.78% in learning all vocabularies. In addition, it can achieve 99.48% F1-Score beyond Deepcut 97.65% in case of all sentences being learnt. The second method has fault tolerance to noise and provides overall result over deep learning in all cases.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference28 articles.

1. Thai Natural Language Processing - word segmentation, semantic analysis, and application;C. Tapsai,2021

2. PornprasertsakulA.Thai Syntactic Analysis1994Pathumthani, ThailandAsian Institute of TechnologyPh.D. thesis

3. Segmenting Words in Thai Language Using Minimum Text Units and Conditional Random Field

4. DeepCut: a Thai word tokenization library using Deep Neural Network;R. Kittinaradorn,2019

5. AttaCut: a fast and accurate neural Thai word segmenter;P. Chormai,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3