Resource Allocation for D2D Communication Underlaying Cellular Networks: A Distance-Based Grouping Strategy

Author:

Gao Jing1ORCID,Meng Xiao2,Yang Chen2,Zhang Bo2,Yi Xin2

Affiliation:

1. School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China

2. School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China

Abstract

Device-to-device (D2D) communication with direct terminal connection is a promising candidate for 5G communication, which increases the capacity of cellular networks and spectral efficiency. Introducing D2D communication to cellular users (CUs) will increase system capacity, and CUs will provide reusable channel resources for D2D users (DUs). However, the sharing of channel resources between CUs and DUs will lead to cofrequency interference and affect the communication quality of user terminals. As a means of improving spectrum utilization and solving cofrequency interference problems, a one-to-many D2D communication system model is established in cellular networks. Through model analysis, the interference between CUs and DUs is correlated with their distance from one another. Considering the different interference of CUs to DUs at different distances, an algorithm for resource allocation based on distance grouping is proposed. With this algorithm, DUs will reuse channel resources of CUs within a reasonable distance in the group, and interference between DUs and CUs will be minimized. The improved particle swarm optimization algorithm is used to solve the optimal power, to achieve the maximum transmission rate of the system. Simulated results show that the algorithm will significantly improve system throughput and performance while also lowering the computational complexity of the algorithm, enabling the whole system to have better communication quality.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3