Protective Effect of Brassica rapa Polysaccharide against Acute High-Altitude Hypoxia-Induced Brain Injury and Its Metabolomics

Author:

Zou Xuemei1ORCID,Yang Hailing2,Li Qiuyue3,Li Ning1,Hou Ya4,Wang Xiaobo2ORCID,Meng Xianli2,Yu Jia1,Zhang Yi1ORCID,Tang Ce1ORCID,Kuang Tingting1ORCID

Affiliation:

1. State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

2. Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

3. Pharmacy Intravenous Admixture Services, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646600, China

4. School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

Abstract

Brassica rapa L., a traditional Tibetan medicine, has been wildly used for treating plateau disease. Polysaccharide is an important chemical component in B. rapa. The present study aimed to evaluate the effect of B. rapa polysaccharide (BRP) against acute high-altitude hypoxia (AHH) induced brain injury and its metabolic mechanism. The rats were randomly divided into six groups: control group, AHH group, Hongjingtian oral liquid group, and three BRP groups (38, 75, and 150 mg/kg/d). Serum levels of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), oxidized glutathione (GSSG), and lactate dehydrogenase (LDH) were detected by commercial biochemical kits. Hippocampus and cortex histopathological changes were observed by H&E staining and Nissl staining. Neuronal apoptosis was observed by TUNEL staining. The protein and gene expression of Caspase-3, Bax, Bcl-2, p-PI3K, PI3K, p-Akt, Akt, HIF-1α, microRNA 210, ISCU1/2, and COX10 were detected by western blotting and qRT-PCR. Then, a brain metabolomics method based on UPLC-Q-Exactive-MS was performed to discover potential biomarkers and analyze metabolic pathways. It was found that BRP decreased levels of MDA, LDH, and GSSG, increased GSH and SOD, reduced the pathological changes, inhibited apoptosis, and activated the PI3K/Akt/HIF-1α signaling pathway as evidenced by increased phosphorylation of PI3K and Akt, enhanced protein expression of HIF-1α and gene levels of microRNA210, ISCU1/2, and COX10. Furthermore, 15 endogenous potential biomarkers were identified in the brain through metabolomics analysis. BRP can regulate 7 potential biomarkers and the corresponding metabolic pathways were mainly associated with pyruvate metabolism and glycolysis/gluconeogenesis. Collectively, BRP has a clear protective effect on AHH-induced brain injury and its mechanisms may be related to ameliorate oxidative stress injury, inhibit apoptosis by activating PI3K/Akt/HIF-1α signaling pathway, and reverse metabolic pathway disturbances.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3