Efficient Hybrid Iterative Method for Signal Detection in Massive MIMO Uplink System over AWGN Channel

Author:

Gebeyehu Zelalem Melak1ORCID,Singh Ram Sewak1,Mishra Satyasis1,Rathee Davinder Singh1

Affiliation:

1. Department of Electronics and Communication Engineering, School of Electrical Engineering and Computing, Adama Science and Technology University, Adama, P. O. Box.1888, Ethiopia

Abstract

Massive multiple input multiple output (massive MIMO) is a key technology in fifth-generation (5G) and beyond fifth-generation (B5G) networks. It improves performance metrics such as gain, energy efficiency, spectral efficiency, and bit error rate (BER). Because of the large number of users and antennas, sophisticated processing is required to detect the transmitted message signal. One of the challenges in massive MIMO systems is transmitted message signal detection. To respond to these challenges, several detection algorithms have been developed, including minimum mean squared error (MMSE), zero forcing (ZF), matched filter (MF), conjugate-gradient (CG), gauss-seidel (GS), and optimized coordinate descent (OCD). Although the ZF and MMSE algorithms perform well, their computational complexity is high due to direct matrix inversion. When the number of users is much lower than the number of antennas, the MF algorithm performs well. However, as the number of users increases, the performance of the MF algorithm degrades. Although the OCD, CG, and GS algorithms have less computational complexity than the MMSE algorithm, they perform poorly in comparison. To address and resolve the shortcomings of existing methods, an efficient iterative algorithm has been proposed in this manuscript, which is a hybrid method possessing the combination of MMSE with the alternating direction method of multipliers (ADMM) technique and Gauss-Seidel method. The initial vector has a large influence on the performance, complexity, and convergence rate of such iterative algorithms. The proposed detector’s initial solution is determined using the diagonal matrix and MMSE with the ADMM technique. The proposed algorithm’s performance and complexity are compared with existing algorithms based on BER and the real number of multiplications, respectively. The numerical results revealed that the proposed algorithm achieves the desired performance with a small number of iterations and a significant reduction in computational complexity. At 8QAM, SNR = 20 dB, 80 × 120 massive MIMO antenna configuration, and n = 2, the percentage performance improvement of the proposed detector from the GS detector is 99.82%. At 32QAM, SNR = 25 dB, 120 × 180 antenna configuration, and n = 5, performance improvement of the proposed detector is 99.89%. At 64QAM, SNR = 28 dB, 80 × 120 antenna configuration, and n = 3, performance improvement of the proposed detector is 99.93%.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3