The Effect of Material Static Mechanical Properties on the Fatigue Crack Initiation Life of Rail Fastening Clips

Author:

Liu Y.12ORCID,Li Qiutong12ORCID,Jiang Xiujie1ORCID,Liu Huan3ORCID,Yuan Xianpu12ORCID,Zhu Zhehao4ORCID

Affiliation:

1. Shanghai Research Institute of Materials, 99 Handan Road, Shanghai 200437, China

2. Shanghai Engineering Research Center of Earthquake Energy Dissipation, 99 Road Handan, Shanghai 200437, China

3. Shanghai Polytechnic University, 2360 Jin Hai Road, Shanghai 201209, China

4. Ecole des Ponts ParisTech, Laboratoire Navier, 6-8 Av. Blaise Pascal, Marne La Vallée, Cedex 2 77455, France

Abstract

This paper aimed to study the effect of material static mechanical properties on the fatigue crack initiation life of ω-shaped rail fastening clips, in which the Vossloh 300-1 fastener system was taken as an example. The static mechanical properties of 38Si7 steel (the material of the clip) were first investigated through a series of uniaxial tensile tests. According to the experimental outcomes, a classic assembly system was simulated afterwards using the finite element analysis (FEA) method. On the basis of the Brown–Miller criterion, an in-depth numerical study regarding the critical plane was realized, which allowed fatigue crack initiation to be successfully reproduced by FEA. Finally, a detailed parametric study was performed with the relevant sensitivity analysis. The results showed that the initiation and progression of fatigue cracks in the fastening clip occur in the plane of the maximum shear strain. The fatigue crack initiation life of the fastening clip was extremely sensitive to the elastic modulus, especially more sensitive to the tensile strength. From an engineering viewpoint, the fatigue resistance of the fastening clip could be boosted by (i) increasing the tensile strength of the material to at least 1450 MPa and (ii) rendering the elastic modulus smaller than 160 GPa.

Funder

Shanghai Rising-Star Program

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3