Identification of an Immune-Related Biomarker Model Based on the CircRNA-Associated Regulatory Network for Esophageal Carcinoma

Author:

Hu Zhaonian1ORCID,Xie Jun2ORCID,Chen Xiaochun2ORCID,Tang Jia2ORCID,Zhou Kaiguo2ORCID,Han Song2ORCID

Affiliation:

1. College of Electronic and Information Engineering, Southwest University, Chongqing, China

2. Department of Cardiothoracic Surgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, China

Abstract

Esophageal carcinoma (ESCA) is one of the most frequent types of malignant tumor that has a dismal prognosis. This research applied datasets aimed from the GEO and TCGA to create a prognostic signature for forecasting the clinical outcome of ESCA patients on the basis of a circRNA-associated regulatory network. Methods. A regulatory network associated with ESCA was established based on transcriptome data of circRNAs, miRNAs, and mRNAs. Functional annotations were implemented to further explore the mechanism of ESCA. Cox relative regression method was applied to create a risk signature. Besides, the immune microenvironment of the signature was investigated by utilizing the CIBERSORT algorithm. Results. Based on 27 DEcircRNAs, 65 DEmiRNAs, and 780 DEmRNAs, the circRNA-miRNA-mRNA network was finally set up. Functional enrichment unearthed that the regulatory network might participate in phosphorylation negative regulation, MAPK pathway, and PI3K/AKT pathway. This study established a risk scoring signature based on the seven immune-related genes (IRGs) (MARP14, RASGR1, PTK2, HMGB1, DKK1, RARB, and IGF1R), which was validated for its reliability. A stable and accurate nomogram combining immune-related risk scores with clinical features was constructed. Furthermore, we observed that the risk model was also related to the immunocyte infiltration. Conclusion. Our study successfully created a circRNA-associated regulatory network and further developed an immune-related model to forecast the clinical outcome of ESCA patients as well as to assess their immune status.

Publisher

Hindawi Limited

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3