Crack Propagation and Fragmentation Characteristics of Single-Flawed Sandstone Samples under Different Loading Conditions

Author:

Lei Wen1,Wenjie Feng2,Mingye Li3ORCID,Junhong Yu4

Affiliation:

1. Department of Engineering Mechanics, Hebei Key Laboratory of Mechanics of Intelligent Materials and Structures, Shijiazhuang Tiedao University, Shijiazhang 050043, China

2. Shijiazhuang Tiedao University, Shijiazhang 050043, China

3. Hebei Polytechnic Institute, Shijiazhang 050091, China

4. Department of Engineering Mechanics, Shijiazhuang Tiedao University, Shijiazhang 050043, China

Abstract

Red sandstone specimens with preexisting single flaw were taken as the research object in the static and dynamic loading tests. A hydraulic press was used for the uniaxial compression experiment, and SHPB was used for the impact test. The corresponding static and dynamic stress-strain curves were obtained. The crack propagation of rock samples under different loading conditions was obtained using the camera system. The crack propagation, compressive strength, and energy characteristics of samples under quasi-static and dynamic impact loading were analyzed. The findings show that the crack initiation, development, and final fracture mode of the samples are closely related to the inclination angle of preexisting flaw and strain rate. Compared with samples under static loading, tensile and shear mixed cracks, layer separation cracks, and more far-field cracks appeared in the samples under dynamic loading. With the increase of the peak of incident wave during the SHPB test, the samples with preexisting flaw change from tensile crack to X-shaped shear failure in the range of medium strain rate. Under different loading conditions, the compressive strength of samples with 45° crack is the lowest. The energy dissipation density and energy dissipating rate of the single-flawed specimens feature a rising trend with the increasing peak of incident wave, and the influence of the inclination angle of preexisting flaw on the energy dissipation is significant for a given peak of incident wave. The strength, energy dissipation, and fractal dimension of the specimens are positively correlated with each other under different strength impact loading. As the peak of incident wave increases, the inclination angle of preexisting flaw has more significant influence on the interrelation of these three parameters.

Funder

Natural Science Foundation of Hebei Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3