Low-Dose Alcohol Improves Lipid Metabolism through Store-Operated Ca2+ Channel-Induced PPARγ Expression in Obese Mice

Author:

Li Fan1ORCID,Zhu Yanyan2,Hu Huijuan3,Cheng Jie3,Sun Xiaoming1,Zhang Zhanqin4,Hu Hao13ORCID

Affiliation:

1. Basic Medicine Experimental Teaching Center, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China

2. Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China

3. Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China

4. Department of Anesthesiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China

Abstract

The relationship between low-dose alcohol consumption and lipid metabolism has been extensively studied during the last few decades. It has been reported that low-dose alcohol consumption upregulates the expression of peroxisome proliferator-activated receptor γ (PPARγ), a vital nuclear transcription factor involved in glucose and lipid metabolism. However, the possible molecular mechanism remains unclear. In the present study, the obese mouse model was established by HFD feeding for 12 weeks, and then alcohol was administered for 4 weeks. The results showed that low-dose alcohol consumption ameliorated HFD-induced glucose tolerance and insulin resistance in mice and decreased markedly the serum lipoprotein profiles levels and the size of lipid droplets that accumulated in the liver. Furthermore, low-dose alcohol consumption upregulated PPARγ and its target genes in obese mice and augmented the expression of relative proteins in store-operated Ca2+ channels (SOCs). Both ethylene glycol tetraacetic acid (EGTA), a Ca2+ chelator, and 2-aminoethoxydiphenyl borate (2-APB), a blocker of SOCs, abolished the alcohol-induced PPARγ upregulation. In conclusion, these results suggested that low-dose alcohol consumption could improve lipid metabolism through SOC-induced PPARγ expression in obese mice.

Publisher

Hindawi Limited

Subject

Cell Biology,Pharmacology,Food Science,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3