Value of Magnetic Resonance Images and Magnetic Resonance Spectroscopy in Diagnosis of Brain Tumors under Fuzzy C-Means Algorithm

Author:

Liu Huaiqin1ORCID,Zhang Qi1ORCID,Niu Shujun1ORCID,Liu Hao1ORCID

Affiliation:

1. Department of Radiology, Zibo Central Hospital, Zibo 255000, Shandong, China

Abstract

This study was aimed to explore the diagnostic value of magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) in brain tumors under the fuzzy C-means (FCM) algorithm. The two-dimensional FCM hybrid algorithm was improved to be three-dimensional. The MRI images and MRS spectra of 127 patients with brain tumors (low-grade glioma group) and 54 healthy people (healthy group) were analyzed. The results suggested that the membership matrix of the improved algorithm had lower ambiguity, higher segmentation accuracy, closer relationship of intrapixels, and stronger irrelevance of interclass pixels. Through the analysis of gray matter volume, it was found that, compared with the healthy group, the gray matter and white matter volumes in the brain of high-grade glioma were higher, and those of low-grade glioma group were lower. The improved FCM algorithm could obtain a higher accuracy of 88.64% in segmenting images. It had a higher sensitivity to gray matter changes in brain tumors, reaching 92.72%; its specificity was not much different from that of traditional FCM, which were 83.61% and 88.06%, respectively. In the diagnostic value, the area under the curve of mean kurtosis was the largest, which was 0.962 ( P  < 0.001). The best critical value was 0.4096, which had a greater reference significance for clinical treatment and prognosis. The ratio of choline/N-acetyl-aspartate and the ratio of choline/creatine also showed significant differences in high- and low-grade gliomas ( P  < 0.05), but the specificity and sensitivity were slightly lower. It also had guiding significance for the grading of gliomas. Overall, the improved FCM algorithm had obvious advantages in the segmentation process of MRI images, which provided help for the clinical diagnosis of brain tumors.

Publisher

Hindawi Limited

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3