Optimal Injection Parameters for Enhancing Coalbed Methane Recovery: A Simulation Study from the Shizhuang Block, Qinshui Basin, China

Author:

Liu Du12ORCID,Shu Longyong2ORCID,Wang Yanbin3,Huo Zhonggang2,Zhao Shihu3,Xiong Xing3

Affiliation:

1. China Coal Research Institute, Beijing 100013, China

2. Mine Safety Technology Branch, China Coal Research Institute, Beijing 100013, China

3. College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China

Abstract

The injection of N2 into coal reservoir has great potential in improving recovery of coalbed methane (CBM). In this study, a numerical model was established based on the GEM component model to evaluate the influences of different N2 injection parameters (production injection well spacing, gas injection timing, gas injection duration, gas injection rate, and the bottom-hole injection pressure) on the production of CBM in the Shizhuang Block of Qinshui Basin, China. Based on the economic benefit of CBM production, the production increasing rate and nitrogen replacement ratio were established to optimize the N2 injection parameters. The results show that (1) the production injection well spacing had the greatest influence on CBM production, followed by injection duration and the bottom-hole injection pressure, and injection timing and injection rate had a relatively small influence. (2) With increasing gas injection duration, injection rate, and the bottom-hole injection pressure, the rate of production increased and the nitrogen replacement ratio decreased. (3) The optimal N2 injection scheme was revealed with the production injection well spacing of 180 m, the injection timing of a second year after gas production, an injection duration of 7 years, an injection rate of 5000 m3/d, and a bottom-hole injection pressure of 10 MPa. Under these conditions, the rate of production increasing rate, the nitrogen displacement ratio, and the regional recovery of the four production wells were 18.14%, 0.5, and 48.96%, respectively, some 8.88% higher than that without nitrogen displacement, showing good effect in terms of CBM production.

Funder

National Science and Technology Major Project

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3