Performance of Resource Management Techniques for Weather-Impacted Satellite Networks

Author:

Imole Olugbenga Emmanuel1ORCID,Walingo Tom Mmbasu1

Affiliation:

1. School of Electrical Electronic and Computer Engineering, University of KwaZulu-Natal, Durban, South Africa

Abstract

Signals transmitted via satellite networks at high frequency in the Ka, Q, and V bands are susceptible to degradation due to rain attenuation. Adaptive transmission techniques are usually employed to mitigate the effect of rain and improve users’ quality of service (QoS) but the effectiveness of these techniques hinges on the accuracy with which rain attenuation on the link is known. Commonly, most techniques rely on predicted attenuation along the link for selection of optimal transmission parameters. This paper proposes an efficient approach to predict the rain attenuation experienced by sources of multimedia connections in rain-impacted satellite networks. The proposed technique is based on three Markov models for widespread, shower, and thunderstorm rain events and predicts the attenuation experienced at different periods within the duration of a user’s connection. It relies on an adaptive modulation and coding (AMC) scheme to dynamically mitigate rain attenuation and a call admission control (CAC) policy to guarantee the satisfaction of users’ QoS requirements.

Funder

University of KwaZulu-Natal

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3