Hui Medicine Moxibustion Promotes the Absorption of Lumbar Disc Herniation and the Recovery of Motor Function in Rats through Fas/FasL Signaling Pathway

Author:

Xu Jianfeng12ORCID,Luo Qiang1ORCID,Song Junyao1ORCID,Zhang Yanming1ORCID,Wang Yingxu1ORCID,Yang Lei1ORCID,Sha Yinyin1,Sun Bowen3ORCID,You Na3,Tian Xinbao3ORCID,Lin Ruizhu1ORCID,Wu Yongli1ORCID

Affiliation:

1. Traditional Chinese Medicine and Traumatology, General Hospital of Ningxia Medical University, Yinchuan, 750004 Ningxia, China

2. Key Laboratory of Modernization of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004 Ningxia, China

3. College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004 Ningxia, China

Abstract

Objectives. To study the resorption of the herniated lumbar disc (RHLD) and its mechanism in the SD rats of lumbar intervertebral disc herniation treated with Hui medicine moxibustion (HMM). Methods. Forty SD rats were randomly divided into four groups, normal group, lumbar disc herniation (LDH) group, HMM group, and antagonist (HMM+Met12) group, with 10 rats in each group. The rat model of LDH was prepared with the method of lumbar epidural emplacement of the caudal intervertebral disc. In the HMM group and HMM+Met12 groups, 4 weeks after modeling, HMM therapy was performed in the lumbar spine for 3 months with 1 time per day and 20 min each time, the samples were collected 8 weeks after the treatment. The histological degeneration was observed through HE staining, and the neovascularization of intervertebral disc tissues was detected by the expression of CD34 and vascular endothelial growth factor (VEGF). The apoptosis of nucleus pulpous cells was detected by TUNEL assay, and the activity of caspase-3, -8, and -9 and extracellular matrix enzymes was detected by western blotting. Results. HMM treatment significantly improved the behavioral ability of rats with LDH surgery. The morphological structure was obviously destroyed in the LDH group, but disc structure was significantly repaired in the HMM group, and mild structure alterations were observed in the HMM+Met12 group. Higher levels of CD34 and VEGF were detected in the HMM group indicating that neovascularization is formed. The expression level of FasL was significantly increased in the HMM group. The protein expression levels of cleaved-caspase-3, cleaved-caspase-8, and cleaved-caspase-9 in nucleus pulposus (NP) tissues were also elevated when treated with HMM, and the TUNEL staining showed the same results. The protein expression levels of matrix metalloproteinases- (MMP-) 1, MMP-2, MMP-3, MMP-13, and ADAMTS-4 were markedly promoted in the HMM group. Met12, a small peptide antagonist of FasL, significantly reduced the effects of HMM. Conclusion. HMM can promote the formation of neovascularization of lumbar intervertebral disc, support the apoptosis of NP cells through Fas/FasL signaling, and regulate the degradation of extracellular matrix enzyme, which then accelerates the absorption of lumbar intervertebral disc herniation and the recovery of motor function in rats.

Funder

Central Government of Ningxia Hui Autonomous Region Guided Local Science and Technology Development Project

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3