Axial Compression Performance of Concrete-Filled Steel Tubular Columns with Different D/t Ratios

Author:

Achuthan Preetha1ORCID,Prabhu Ganapathy Ganesh2ORCID,Vimal Arokiaraj George Gabriel3ORCID,Sivanantham Panneerselvam Arul1ORCID,Suthagar Subramanian4ORCID

Affiliation:

1. Civil and Architectural Engineering Section, Department of Engineering, University of Technology and Applied Sciences, Muscat, Oman

2. Department of Civil Engineering, GMR Institute of Technology, Rajam, Andhra Pradesh, India

3. Department of Civil Engineering, University College of Engineering, Thirukkuvalai, Nagapattinam, Tamilnadu, India

4. Department of Mechanical Engineering, College of Engineering and Technology, Samara University, Afar 7240, Ethiopia

Abstract

The impacts of three diameter/thickness (D/t) ratios (21.22, 25.46, and 31.83) and concrete strengths (40 N/mm2, 50 N/mm2, and 60 N/mm2) on the strength capabilities of concrete-filled steel tubular (CFST) columns are investigated in this study. The central composite design (CCD) of the response surface methodology (RSM) was used to design the trials in order to complete the tests in a cost-effective manner. 13 (9 distinct tests) columns were evaluated according to the CCD experimental design, and the failure mode of the specimens, load–deformation behavior, and ultimate strength capacity were investigated. Concrete strength improves, resulting in a decrease in steel tube confinement on the core. Because the steel tube longitudinal compressive stress (fsl) increases as the D/t ratio lowers, the confinement is reduced by inhibiting the circumferential tensile stress (fsc). The Reynolds stress model’s, analysis of variance (ANOVA), Pareto chart, and contour plot demonstrated that the column D/t ratio, rather than the in-filled concrete strength, has a considerable impact on the CFST column’s strength capability. The proposed design models in different international codes and literature were evaluated for their effectiveness in predicting the strength capacities of CFST columns subjected to axial compression load. Using regression analysis, a simple design model was suggested to predict the axial strength capacities of CFST short columns, taking into account material strength and column shape. In comparison to other existing and suggested design models, the proposed design model of the present study delivers a more accurate and stable forecast.

Funder

Samara University

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3