Lycopene Ameliorates Hypoxic Pulmonary Hypertension via Suppression of Oxidative Stress

Author:

Wang Dingyou1,Ji Yuke1,Wang Rui1,Cheng Ke1,Liu Liang1,Wu Na1,Tang Qing1,Zheng Xu1,Li Junxia1,Zhu Zhilong1,Wang Qinghua1,Zhang Xueyan1,Li Runbo1,Pan Jinjin1ORCID,Sui Zheng2ORCID,Yuan Yuhui1ORCID

Affiliation:

1. The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China

2. Department of Vasculocardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China

Abstract

Hypoxic pulmonary hypertension (HPH) is a progressive cardiopulmonary system disease characterized by pulmonary vascular remodeling. Its occurrence and progression are closely related to oxidative stress. Lycopene, extracted from red vegetables and fruits, exhibits a particularly high antioxidant capacity that is beneficial for cardiovascular diseases. Nevertheless, the role and mechanism of lycopene in HPH remain unknown. Here, we found that lycopene reversed the elevated right ventricular systolic pressure (RVSP), right ventricular hypertrophy, and pulmonary vascular remodeling induced by hypoxia in rats. In vitro, lycopene caused lower proliferation and migration of PASMCs, with higher apoptosis. Consistent with the antiproliferative result of lycopene on hypoxic PASMCs, the hippo signaling pathway associated with cell growth was activated. Furthermore, lycopene reduced malondialdehyde (MDA) levels and enhanced superoxide dismutase (SOD) activity in the lungs and serum of rats under hypoxia conditions. The expression of NOX4 in the lungs was also significantly decreased. Hypoxic PASMCs subjected to lycopene showed decreased reactive oxygen species (ROS) production and NOX4 expression. Importantly, lycopene repressed HIF-1α expression both in the lungs and PASMCs in response to hypoxia in the absence of a significant change of HIF-1α mRNA. Compared with 2ME2 (a HIF-1α inhibitor) alone treatment, lycopene treatment did not significantly change PASMC proliferation, NOX4 expression, and ROS production after 2ME2 blocked HIF-1α, suggesting the inhibitory effect of lycopene on HIF-1α-NOX4-ROS axis and the targeted effect on HIF-1α. After CHX blocked protein synthesis, lycopene promoted the protein degradation of HIF-1α. MG-132, a proteasome inhibitor, notably reversed the decrease in HIF-1α protein level induced by lycopene in response to hypoxia. Therefore, lycopene suppressed hypoxia-induced oxidative stress through HIF-1α-NOX4-ROS axis, thereby alleviating HPH. Our findings will provide a new research direction for clinical HPH therapies.

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3