Affiliation:
1. Shaanxi Normal University, Xi’an, Shaanxi 710000, China
Abstract
Traditional text annotation-based video retrieval is done by manually labeling videos with text, which is inefficient and highly subjective and generally cannot accurately describe the meaning of videos. Traditional content-based video retrieval uses convolutional neural networks to extract the underlying feature information of images to build indexes and achieves similarity retrieval of video feature vectors according to certain similarity measure algorithms. In this paper, by studying the characteristics of sports videos, we propose the histogram difference method based on using transfer learning and the four-step method based on block matching for mutation detection and fading detection of video shots, respectively. By adaptive thresholding, regions with large frame difference changes are marked as candidate regions for shots, and then the shot boundaries are determined by mutation detection algorithm. Combined with the characteristics of sports video, this paper proposes a key frame extraction method based on clustering and optical flow analysis, and experimental comparison with the traditional clustering method. In addition, this paper proposes a key frame extraction algorithm based on clustering and optical flow analysis for key frame extraction of sports video. The algorithm effectively removes the redundant frames, and the extracted key frames are more representative. Through extensive experiments, the keyword fuzzy finding algorithm based on improved deep neural network and ontology semantic expansion proposed in this paper shows a more desirable retrieval performance, and it is feasible to use this method for video underlying feature extraction, annotation, and keyword finding, and one of the outstanding features of the algorithm is that it can quickly and effectively retrieve the desired video in a large number of Internet video resources, reducing the false detection rate and leakage rate while improving the fidelity, which basically meets people’s daily needs.
Funder
Shaanxi Normal University
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献