Organic, Gas, and Element Geochemistry of Hydrothermal Fluids of the Newly Discovered Extensive Hydrothermal Area in the Wallis and Futuna Region (SW Pacific)

Author:

Konn C.1ORCID,Donval J. P.1,Guyader V.1,Roussel E.2,Fourré E.3,Jean-Baptiste P.3,Pelleter E.1,Charlou J. L.1,Fouquet Y.1

Affiliation:

1. Ifremer, Laboratoire des Cycles Géochimiques et Ressources, CS10070, 29280 Plouzané, France

2. Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes, CS10070, 29280 Plouzané, France

3. LSCE, UMR 8212 CEA-CNRS-UVSQ, 91191 Gif-sur-Yvette, France

Abstract

Two newly discovered hydrothermal vent fields of the Wallis and Futuna region, Kulo Lasi and Fatu Kapa, were sampled for fluid geochemistry. A great geochemical diversity was observed and assigned to the diversity of lithologies as well as the occurrence of various processes. Kulo Lasi fluids likely formed by interaction with fresh volcanic rocks, phase separation, and mixing with magmatic fluid. Conversely, the geochemistry of the Fatu Kapa fluids would be mostly due to water/felsic lavas reactions. In terms of organic geochemistry, fluids from both fields were found to be enriched in formate, acetate, and semivolatile organic compounds (SVOCs): n-alkanes, n-fatty acids, and polyaromatic hydrocarbons (PAHs). Concentrations of SVOCs reached a few ppb at most. The distribution patterns of SVOCs indicated that several processes and sources, at once of biogenic, thermogenic, and abiogenic types, likely controlled organic geochemistry. Although the contribution of each process remains unknown, the mere presence of organics at the μM level has strong implications for metal dispersion (cycles), deposition (ore-forming), and bioavailability (ecosystems), especially as our fluxes estimations suggest that back-arc hosted vent fields could contribute as much as MOR to the global ocean heat and mass budget.

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3