Effect of Size, Shape, and Composition on the Interaction of Different Nanomaterials with HeLa Cells

Author:

Renero-Lecuna Carlos1,Iturrioz-Rodríguez Nerea1,González-Lavado Eloisa1,Padín-González Esperanza1,Navarro-Palomares Elena1,Valdivia-Fernández Lourdes1,García-Hevia Lorena2,Fanarraga Mónica L.1,González-Legarreta Lorena1ORCID

Affiliation:

1. Grupo de Nanomedicina, Universidad de Cantabria-IDIVAL, 39011 Santander, Spain

2. Amthena Lab, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal

Abstract

The application of nanomaterials in the fields of medicine and biotechnology is of enormous interest, particularly in the areas where traditional solutions have failed. Unfortunately, there is very little information on how to optimize the preparation of nanomaterials for their use in cell culture and on the effects that these can trigger on standard cellular systems. These data are pivotal in nanobiotechnology for the development of different applications and to evaluate/compare the cytotoxicity among the different nanomaterials or studies. The lack of information drives many laboratories to waste resources performing redundant comparative tests that often lead to partial answers due to differences in (i) the nature of the start-up material, (ii) the preparation, (iii) functionalization, (iv) resuspension, (v) the stability/dose of the nanomaterial, etc. These variations in addition to the different analytical systems contribute to the artefactual interpretation of the effects of nanomaterials and to inconsistent conclusions between different laboratories. Here, we present a brief review of a wide range of nanomaterials (nanotubes, various nanoparticles, graphene oxide, and liposomes) with HeLa cells as a reference cellular system. These human cells, widely used as cellular models for many studies, represent a reference system for comparative studies between different nanomaterials or conditions and, in the last term, between different laboratories.

Funder

Ministerio de Economía y Competitividad

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3