Numerical Investigation of Carbon Fiber Reinforced Polymer Confined Concrete-Filled Steel Tube Columns under Eccentric Load

Author:

Degefa Zewdu Brhanu1,Wondimu Aure Temesgen1ORCID

Affiliation:

1. Department of Civil Engineering, College of Architecture and Civil Engineering, Addis Ababa Science and Technology University, Addis Ababa 16417, Ethiopia

Abstract

Recently, Fiber Reinforced Polymer (FRP) materials have emerged as a viable alternative to confined columns due to their high ultimate tensile strength to weight ratio and corrosion resistance under harsh and corrosive environments. Many previous studies were focused on the confining capability of FRP on concentric axial loads. This study presents a nonlinear finite element (FE) investigation of the effects of the thickness of Carbon Fiber Reinforced Polymer (CFRP), the thickness of steel tube, cross-sectional shape, and slenderness effect of an FRP confined concrete-filled steel tube (FCCFST) column under eccentric load. The FE model was validated by comparing the results with experimental data available in the literature, and good agreement was found. From the FE results, it was found that the steel tube and CFRP confinement improved the load resistance capacity by about 34% to 39%, and the axial shortening of the column at the peak load, from 136% to 57%, in rectangular and circular cross-sections, respectively. The efficiencies of steel tube and CFRP confinement first increase with an increasing eccentricity of the axial load and then start to decrease as the failure mode of the column changes to stability.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3