Biogenic Synthesis of Gold Nanoparticles from Physalis peruviana and Application in Wound Healing

Author:

Adongo Odongo Stephen1ORCID,Oluoch Okumu Fredrick1ORCID,Omwoma Lugasi Solomon1ORCID,Opiyo Onani Martin1ORCID,Gaya Agong Stephen2ORCID

Affiliation:

1. Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210-40601, Bondo, Kenya

2. Department of Plant, Animal and Food Sciences, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210-40601, Bondo, Kenya

Abstract

Wound management is key to healing. Poorly managed wounds lead to abnormal biological reactions and complications. Microorganisms, bacteria or fungi, infect such wounds leading to their chronic nature. Gold nanoparticles (Au NPs) show wound healing properties. In addition, ethnobotanical information from Siaya County in Kenya shows the leaves of Physalis peruviana L. to be effective in wound management. A combination of Au NPs and leave extracts of Physalis peruviana L. through a one pot biogenic synthesis leads to a new effective wound management substance. The synthesis was done at room temperature 25°C and at 85°C. The UV-visible spectroscopy results show efficient sharper plasmon bands with a blue shift indicating a decrease in λ max compared to red shift which show an increase in λ max. The surface plasmon resonance is a sharper at wavelength of about 540 nm. Dynamic light scattering and zeta potential analysis show that the polydispersity index is high and this is attributed to heterogeneity of chemical components of the plants. Transmission electron microscopy results for Au NPs show similarity in their shapes and sizes with grain size boundaries of between 1 nm and 100 nm. The particles are spherically shaped and crystalline with small lattice due to the small grains. The gold nanoparticles synthesized from Physalis peruviana show antimicrobial activities against gram-positive bacteria and, gram-negative bacteria as well as gram-positive fungus. The inhibition zones for Au NPs of different concentrations vary significantly between concentrations (one-way ANOVA at P < 0.05 ). The highest antibacterial activity is at 100 mM of Au NPs against Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. The inhibition zones for Au NPs at concentration of 100 mM and Physalis peruviana extract vary significantly in all the microbial cells, except for Pseudomonas aeruginosa (one-way ANOVA, F(3,11) = 2.67, P = 0.1189 ). Application of the Au NPs in wound healing is faster than controls. The Au NPs also have good biocompatibility as signs of infection were not present.

Funder

National Commission for Science, Technology and Innovation

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3