Methylation-Mediated Silencing of RBP7 Promotes Breast Cancer Progression through PPAR and PI3K/AKT Pathway

Author:

Lin Hong12ORCID,Han Qizheng2ORCID,Wang Junhao2ORCID,Zhong Zhaoqian2ORCID,Luo Haihua2ORCID,Hao Yibin1ORCID,Jiang Yong2ORCID

Affiliation:

1. The fifth Clinical Medical College of Henan University of Chinese Medicine, Henan University of Chinese Medicine, No. 33 Huanghe Road, Zhengzhou, 410105 Henan, China

2. Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515 Guangdong, China

Abstract

Retinoid-binding protein7 (RBP7) is a member of the cellular retinol-binding protein (CRBP) family, which is involved in the pathogenesis of breast cancer. The study aims to illustrate the prognostic value and the potential regulatory mechanisms of RBP7 expression in breast cancer. Bioinformatics analysis with the TCGA and CPTAC databases revealed that the mRNA and protein expression levels of RBP7 in normal were higher compared to breast cancer tissues. Survival analysis displayed that the lower expression of RBP7, the worse the prognosis in ER-positive (ER+) breast cancer patients. Genomic analysis showed that low expression of RBP7 correlates with its promoter hypermethylation in breast cancer. Functional enrichment analysis demonstrated that downregulation of RBP7 expression may exert its biological influence on breast cancer through the PPAR pathway and the PI3K/AKT pathway. In summary, we identified RBP7 as a novel biomarker that is helpful for the prognosis of ER+ breast cancer patients. Promoter methylation of RBP7 is involved in its gene silencing in breast cancer, thus regulating the occurrence and development of ER+ breast cancer through the PPAR and PI3K/AKT pathways.

Funder

Guangdong Science and Technology Department

Publisher

Hindawi Limited

Subject

Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3