DIM-Based Random Number Generation Using Quantum Noise Resources

Author:

Wi Hansaem1ORCID,Lee Seyoon1ORCID,Yi Okyeon2ORCID

Affiliation:

1. Department of Financial Information Security at Kookmin University, Seoul 02707, Republic of Korea

2. Department of Information Security Cryptology and Mathematics at Kookmin University, Seoul 02707, Republic of Korea

Abstract

Currently, unmanned aircraft systems (UASs) or drones are in service in various industrial fields, and each UAS operator establishes and operates their own independent drone system. These individual drone systems interact only with their own components without any integrated management. As the number of UASs is increasing due to the expansion of the drone industry, standardized operation is required. Therefore, to integrate and manage existing drone systems, the Federal Aviation Administration and National Aeronautics and Space Administration devised UAS Traffic Management (UTM). The drone identity module (DIM), which is being developed as a drone identification device, securely stores the remote identification (RID) of each drone and performs a cryptographic operation to secure information between the drone and UTM infrastructure. The DIM performs cryptographic authentication protocols to achieve cryptographic identification and authentication with the UTM infrastructure, which requires random numbers. Modern cryptographic systems rely on difficult computations, and an environment capable of generating secure cryptographic random numbers must be configured to provide high computational costs to attackers. In this paper, we explain the need for random numbers in the DIM, analyze random number generators used in related drone-based studies, and analyze the characteristics of noise resource generation devices that can be used in existing drone systems. Subsequently, based on the analysis results, existing methods are used to generate random numbers in the DIM, and limitations are derived. To overcome these limitations, we propose a method of generating random numbers in the DIM using quantum noise resources. For our proposal, we conduct an analysis of the physical specifications of noise resource generation devices, DIM prototypes, and quantum noise resource generators in existing drone systems, and we present the results of NIST 800-90B entropy measurement using data collected from quantum random number generators.

Funder

Institute of Information & communications Technology Planning & Evaluation

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference22 articles.

1. Privacy-Preserved Data Sharing Towards Multiple Parties in Industrial IoTs

2. Trading private range counting over big IoT data;Z. Cai

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3