Well Performance from Numerical Methods to Machine Learning Approach: Applications in Multiple Fractured Shale Reservoirs

Author:

Liu Kailei1ORCID,Xu Boyue2ORCID,Kim Changjea3ORCID,Fu Jing4ORCID

Affiliation:

1. School of Economics and Management, China University of Geosciences, Wuhan, China

2. Sinopec Research Institute of Petroleum Engineering, Beijing, China

3. Data Science and Analytics Institute, The University of Oklahoma, Norman, USA

4. Petroleum Engineering Department, Colorado School of Mines, Golden, USA

Abstract

Horizontal well fracturing technology is widely used in unconventional reservoirs such as tight or shale oil and gas reservoirs. Meanwhile, the potential of enhanced oil recovery (EOR) methods including huff-n-puff miscible gas injection are used to further increase oil recovery in unconventional reservoirs. The complexities of hydraulic fracture properties and multiphase flow make it difficult and time-consuming to understand the well performance (i.e., well production) in fractured shale reservoirs, especially when using conventional numerical methods. Therefore, in this paper, two methods are developed to bridge this gap by using the machine learning technique to forecast well production performance in unconventional reservoirs, especially on the EOR pilot projects. The first method is the artificial neural network, through which we can analyze the big data from unconventional reservoirs to understand the underlying patterns and relationships. A bunch of factors is contained such as hydraulic fracture parameters, well completion, and production data. Then, feature selection is performed to determine the key factors. Finally, the artificial neural network is used to determine the relationship between key factors and well production performance. The second is time series analysis. Since the properties of the unconventional reservoir are the function of time such as fluid properties and reservoir pressure, it is quite suitable to apply the time series analysis to understand the well production performance. Training and test data are from over 10000 wells in different fractured shale reservoirs, including Bakken, Eagle Ford, and Barnett. The results demonstrate that there is a good match between the available and predicated well performance data. The overall R values of the artificial neural network and time series analysis are both above 0.8, indicating that both methods can provide reliable results for the prediction of well performance in fractured shale reservoirs. Especially, when dealing with the EOR field cases, such as huff-n-puff miscible gas injection, Time series analysis can provide more accurate results than the artificial neural network. This paper presents a thorough analysis of the feasibility of machine learning in multiple fractured shale reservoirs. Instead of using the time-consuming numerical methods, it also provides a more robust way and meaningful reference for the evaluation of the well performance.

Funder

Chengdu University of Technology

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3