Postfire Safety Investigation on Prestressed RPC Beams after Exposure to Elevated Temperatures

Author:

Kai Yan1ORCID,Yao Zhang1,Hao Cai1,Lili Fan2,Zhang Xin1

Affiliation:

1. Key Lab of Building Structural Retrofitting and Underground Space Engineering of the Ministry of Education, Shandong Jianzhu University, Jinan, China

2. Shandong Institute of Mechanical Design, Jinan, China

Abstract

Since the postfire safety of prestressed RPC beams after exposure to elevated temperatures needs to be studied and proved, this paper prepares eight smart prestressed RPC beams with intelligent sensors built in to monitor the internal temperature, force, and strain. The residual bearing tests after fire are carried out. The failure process of the beams under static load with different fire durations cover thickness of tendons, load ratio, bonded and unbonded tendons, and partial prestressing ratio, which are investigated. The load-deflection curves, crack distributions and developments, and strain variations are obtained, in addition to the damage mechanism and failure mode of the beams. The results show that the load-deflection curve of the prestressed RPC beam after fire has obviously three polylines, and the deflection points are where the cracks expand and the tendons yield. The failure procedure is the same as that of under-reinforced beams, while the height of the crushing zone is much lower than that of the balanced-reinforced beam at room temperature. The whole span deformation demonstrates a strong catenary effect, and the midspan deflection is approximately 1/40 of the effective span. The postfire safety of the bonded prestressed RPC beams is superior to that of unbonded prestressed RPC beams. The test results of this paper provide a basis for the safety performance evaluation and control of prestressed RPC beams after fire.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3