Breast Cancer Prediction: A Fusion of Genetic Algorithm, Chemical Reaction Optimization, and Machine Learning Techniques

Author:

Islam Md. RafiqulORCID,Islam Md. ShahidulORCID,Majumder Saikat

Abstract

Breast cancer is currently one of the most prevalent cancers affecting women globally. Uncontrolled growth and division of breast cells lead to the formation of tumors, marking the onset of breast cancer. Predicting breast cancer is essential for early detection, making treatment plans, and implementing preventive measures, ultimately improving patient outcomes and reducing mortality rates. In recent years, numerous studies have been published to predict breast cancer where researchers use a variety of methods. Most investigations have been conducted using narrow and specific datasets, often resulting in a lack of accuracy. Such methods may not be suitable for clinical use. The study aims to address the limitations of existing models in terms of robustness and generalization across diverse datasets. In our study, we employed two metaheuristic algorithms, namely, genetic algorithm (GA) and chemical reaction optimization (CRO) with machine learning techniques, including support vector machine (SVM), decision tree, random forest, and XGBoost. GA and CRO are used to optimize the feature selection process. It enables machine learning algorithms to predict more accurately. Experiments were conducted on three datasets, namely, Wisconsin Breast Cancer (WBC), Breast Cancer‐the University of California, Irvine (BC‐UCI), and Breast Cancer Coimbra (BCC) datasets. The datasets contain 569, 286, and 116 instances, respectively. The classifiers with optimized features consistently outperformed the classifiers without feature optimization in terms of accuracy, precision, recall, specificity, and F1 score. Among the compared methods published recently, our method attained the highest accuracies of 99.64% in the WBC dataset and 98% in the BCC dataset, as well as the second highest accuracy of 99.12% in the BC‐UCI dataset. Comparative analysis demonstrated the superiority of our approach over existing methods.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3