Multiple Traffic Target Tracking with Spatial-Temporal Affinity Network

Author:

Sun Yamin12ORCID,Zhao Yue3ORCID,Wang Sirui4ORCID

Affiliation:

1. School of Architecture & Civil Engineering, Xi’an University of Science & Technology, Xi’an 710054, China

2. Postdoctoral Research Station on Civil Engineering, Xi’an University of Science & Technology, Xi’an 710054, China

3. School of Civil Engineering & Architecture, Xi’an University of Technology, Xi’an 710048, China

4. Shaanxi Transportation Holding Group Co., Ltd., Xi’an 710000, China

Abstract

Traffic target tracking is a core task in intelligent transportation system because it is useful for scene understanding and vehicle autonomous driving. Most state-of-the-art (SOTA) multiple object tracking (MOT) methods adopt a two-step procedure: object detection followed by data association. The object detection has made great progress with the development of deep learning. However, the data association still heavily depends on hand crafted constraints, such as appearance, shape, and motion, which need to be elaborately trained for a special object. In this study, a spatial-temporal encoder-decoder affinity network is proposed for multiple traffic targets tracking, aiming to utilize the power of deep learning to learn a robust spatial-temporal affinity feature of the detections and tracklets for data association. The proposed spatial-temporal affinity network contains a two-stage transformer encoder module to encode the features of the detections and the tracked targets at the image level and the tracklet level, aiming to capture the spatial correlation and temporal history information. Then, a spatial transformer decoder module is designed to compute the association affinity, where the results from the two-stage transformer encoder module are fed back to fully capture and encode the spatial and temporal information from the detections and the tracklets of the tracked targets. Thus, efficient affinity computation can be applied to perform data association in online tracking. To validate the effectiveness of the proposed method, three popular multiple traffic target tracking datasets, KITTI, UA-DETRAC, and VisDrone, are used for evaluation. On the KITTI dataset, the proposed method is compared with 15 SOTA methods and achieves 86.9% multiple object tracking accuracy (MOTA) and 85.71% multiple object tracking precision (MOTP). On the UA-DETRAC dataset, 12 SOTA methods are used to compare with the proposed method, and the proposed method achieves 20.82% MOTA and 35.65% MOTP, respectively. On the VisDrone dataset, the proposed method is compared with 10 SOTA trackers and achieves 40.5% MOTA and 74.1% MOTP, respectively. All those experimental results show that the proposed method is competitive to the state-of-the-art methods by obtaining superior tracking performance.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3