Affiliation:
1. Department of Civil Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology, New Kandy Road, Malabe, Sri Lanka
Abstract
Mangroves are an essential plant community in coastal ecosystems. While the importance of mangrove ecosystems is well acknowledged, climate change is expected to have a considerable negative impact on them, especially in terms of temperature, precipitation, sea level rise (SLR), ocean currents, and increasing storminess. Sri Lanka ranks near the bottom of the list of countries researching this problem, even though the scientific community's interest in examining the variation in mangrove health in response to climate change has gained significant attention. Consequently, this study illustrates how the leaf area index, a measure of mangrove health, fluctuates in response to varying precipitation, particularly during droughts in Sri Lanka's Kadolkele mangrove forest. The measurements of the normalized difference vegetation index (NDVI) were used to produce the leaf area index (LAI), which was then combined with the standard precipitation index (SPI) to estimate the health of the mangroves. The climate scenario, RCP8.5, was used to forecast future SPI (2021–2100), and LAI was modeled under the observed (1991–2019) and expected (2021–2100) drought events. The study reveals that the forecasted drought intensities modeled using the RCP8.5 scenario have no significant variations on LAI, even though some severe and extreme drought conditions exist. Nevertheless, the health of the mangrove ecosystem is predicted to deteriorate under drought conditions and rebound when drought intensity decreases. The extreme drought state (-2.05) was identified in 2064; therefore, LAI has showcased its lowest (0.04). LAI and SPI are projected to gradually increase from 2064 to 2100, while high fluctuations are observed from 2021 to 2064. Limited availability of LAI values with required details (measured date, time, and sample locations) and cloud-free Landsat images have affected the study results. This research presents a comprehensive understanding of Kadolkele mangrove forest under future droughts; thus, alarming relevant authorities to develop management plans to safeguard these critical ecosystems.
Subject
Atmospheric Science,Pollution,Geophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献